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Ha oTpeske u3yuaeTcs mepBas KpaeBas 3a[aua THIA peakumu-auddy3uu s CUHTYIAPHO BO3MYIIEHHOTO
mapa6onuyeckoro ypasHeHus. JlJIA amIpoKCHMAIMy KPAeBOM 33034y UCIOIB3YIOTCA Pa3HOCTHBIE CXEMEI BRICO-
KOro (£-paBHOMEpHO) MOPANKa TOYHOCTH IO BPeMEHU, Pa3paGOTaHHbIE paHee HA OCHOBE KODDEKINM HEBA3KH.
HoBrIM B 5TOi CTaThe ABILETCA BBENEHME DasnesieHus O6IacCTH IJIs TAKMX E-DABHOMEDHEIX CXeM. Y Ka3aHhl
YCIIOBUS, NP KOTOPHIX PAa3HOCTHbIE CXEMBI, MCIOJIb3YEMbIE HE3ABUCUMMO HA IONO0G/IACTAX, MOI'YT yCKODUTH €-
PABHOMEPHO DelleHMe KPaeBoit 3a1a4n 6e3 morepu TOUHOCTH UCXOAHbIX cxeM. CrenoBaTesbHO, ONHOBPEMEHHOE
pellleHye 3aa4M Ha PAa3HBIX HOMOGIACTAX MOXET GHITH B NPMHLIMIE MCIOIBL30BAHO N4 PaCHapallIeIMBaHN
BBIYMCJINTENBEHOTO METOHA.

Hemker P.W., Shishkin G.I., Shishkina L.P. Distributing the numerical solution of
parabolic singularly perturbed problems with defect correction over independent processes //
Siberian J. of Numer. Mathematics / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk,
2000. — Vol. 3, Ne 3. — P. 229-258.

For a singularly perturbed parabolic equation on an interval, the first boundary value problem of reaction-
diffusion type is studied. For the approximation of the boundary value problem we use previously developed
finite difference schemes, of high e-uniform order of accuracy in time, based on defect correction. The new ap--
proach developed in this paper is the introduction of a partitioning of the domain for these e-uniform schemes.
We determine conditions under which the difference schemes applied independently on the subdomains can
accelerate (e-uniformly) the solution of the boundary value problem without losing the accuracy of the original
schemes. Hence, the simultaneous solution on the subdomains can in principle be used for parallelization of
the computational method.

1. Introduction

Special e-uniformly convergent difference schemes for singularly perturbed boundary value
problems for elliptic and parabolic equations have been well developed, see e.g., [1-4, 8, 9,
13]. If the problem data are sufficiently smooth for parabolic equations without convec-
tion terms, then the order of e-uniform convergence for the scheme studied in [1, 2] will be
O(N—2 In? N + Ny 1), where N and Ny denote, respectively, the number of intervals in the
space and time discretization. For this scheme the amount of computational work is primar-
ily determined by the time discretization, which is of first order accuracy only. In [3, 4] we
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developed an algorithm based on the defect correction principle which achieves a high order
of accuracy with respect to time and preserves second-order accuracy in space.

To improve the efficiency of the algorithm, we also need efficient high order methods for
solving discretized problems. In paper [14] parallel computational methods were proposed
that make it possible to accelerate the numerical solution of singularly perturbed boundary
value problems for parabolic reaction-diffusion equations. In the present paper we develop
a new, related, computational method to solve the system of discrete equations that arises
when the defect correction technique is used to improve the accuracy of the discrete problem.
In this way, we achieve a high order of accuracy for the time variable, maintaining e-uniform
convergence and second-order accuracy in space, as well as high efficiency of the algorithms
due to possible parallel computations. It should be noted that this parallel method is not
iterative within its time steps.

The schemes developed for parallel computation can be considered as domain decomposi-
tion variants of schemes based on the defect correction technique. The domain decomposition
introduces additional errors (perturbations) in the solutions obtained by the gschemes. In
this paper we determine conditions (both for the derivatives of the solutions and for the
parameters of the difference schemes) under which parallel computation does not affect the
accuracy of the solution. Thus, by means of parallel computation we can achieve an acceler-
ation of the solution process and maintain the high order of accuracy of the schemes based
on defect correction technique.

In this paper we use the convention that symbol L4 ;) denotes the symbol L introduced
in formula (k.l). Wherever no confusion is possible, additional subscripts may be omitted.

2. Problem formulation

In the domain G = (0,1) x (0,T], with boundary S = G \ G we consider the following
singularly perturbed parabolic equation with Dirichlet boundary conditions:

2
Liyu(z,t) = {52a(a:,t)5i—2— —c(z, t) —p(w,t)%}u(m,t) = f(z,t), (z,t)€ G, (2.1a)

u(z,t) = ¢(z,t), (z,t)€S. (2.1b)

For S = Sy U Sy, we distinguish the initial boundary So = {(«,t) : = € [0,1], t = 0} and the
lateral boundary S; = {(z,t): £ =00rz=1,0<¢ < T} In(2.1) a(z,t), c(z,t), p(z,t),
f(z,t), (z,t) € G, and p(z,t), (z,t) € S, are sufficiently smooth and bounded functions
which satisfy

0 < ap < a(z,t), 0 < po < p(z,t), c(z,t) >0, (z,t)€q. (2.1c)
The real parameter ¢ may take any positive value in the interval
e € (0,1]. (2.1d)

When the parameter € tends to zero in (2.1a) in the neighborhood of the lateral boundary
S1, boundary layers appear in the solution. These layers are described by a parabolic equation
(parabolic boundary layers). '

For problem (2.1), we construct a numerical method that has a high order of accuracy
with respect to time and, in addition, allows for parallel solution of the difference equations.
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3. The difference scheme

To solve problem (2.1) we first consider a classical finite difference method. On the set G

we introduce a rectangular grid _
Gy = @ X @y, (31)

where @ is (possibly) a non-uniform grid of nodal points z* on [0, 1], @, is a uniform grid on
the interval [0,T]; N and Ny are the numbers of intervals in the grids @ and &y, respectively.
We denote 7 = T'/ Ny, ht = gitl — a:i, h = max; hi, h<M/N,Gr,=GnN @h, Sp=8nN G—h.
Here and below we denote by M (or m) sufficiently large (or small) positive constants
which do not depend on parameters € and N.
For problem (2.1), we use the difference scheme [10]

A@2z(z,t) = f(z,t), (z,t) € Gh, (3.2a)
Z(:B,t) = (p(a:,t), (:I),t) € Sh, (32b)
where
As2z(z,t) = {’a — o(e,t) — p(,t)dz | 2(z,t),

Szaz(at,t) = 2(h~ 1+h’) {Jzz(wi,t)—-éiz(cci,t)],
) = (h)7! (2(2",8) - 2(a%,1))

bp2(at,t) = (K1) (2(a',1) — 2(2*71,1))

bz(a,t) = 771 (2(ah,t) — 2(2',t — 7))

6zz(a’,t

d.z(z,t) and 8zz(z,t), Ozz(z,t) are forward and backward differences, and dzzz(z,t) is
an approximation of the derivative (8%/8z2)u(z,t) on a non-uniform grid.

From [10], we know that the difference scheme (3.2), (3.1) is monotone. By means of
the maximum principle, and taking into account a-priori estimates of the derivatives (see
Theorem 11.1 in the Appendix), we find that the solution of the difference scheme (3.2),
(3.1) converges for a fixed value of the parameter ¢ as

lu(z,t) — z(z,t)| < M(eT'N"1+ 1), (z,t) € G (3.3)

Our proof of (3.3) is similar to the classical convergence proof for monotone difference
schemes [10, 13]. Taking into account an a-priori estimate for the solution (see the Appendix),
this results in the following theorem:

Theorem 3.1. Let us assume that estimate (11.2), where n = 0, holds for the solution of
(2.1). Then, for a fized value of the parameter ¢, the solution of (3.2), (3.1) converges to the
solution of (2.1) with the error bound given by (3.3).

4. The e-uniformly convergent method

In this section we discuss an e-uniformly convergent method for (2.1) by taking a special
grid condensed in the neighborhood of the boundary layers. The distribution of nodes is
derived from a priori estimates of the solution and its derivatives. We follow the approach
described in [3, 8, 11, 13], i.e., we take



232 P.W. Hemker, G.I. Shishkin and L.P. Shishkina

G = @* (o) X @y, (4.1)

where @ is a uniform grid with step-size 7 = TNy 1 and @* = @*(o) is a special piecewise
uniform grid depending on a parameter o € IR, which depends on € and N. We take
‘o = o(e, N) = min[1/4, me In N], where m is an arbitrary positive number. The grid w*(o) is
constructed as follows. The interval [0,1] is divided in three parts [0,0], [0,1 — 0], [1 — 0,1],
0 < o < 1/4. In each part we use a uniform grid, with N /2 subintervals in [0, 1 — o] and with
N/4 subintervals in each interval [0,] and [1 — ¢, 1].

Theorem 4.1. If the solution of problem (2.1) satisfies the hypotheses of Theorem 11.1 (see
Appendiz), where n = 0, then the solution of (3.2), (4.1) converges e-uniformly to the solution
of (2.1), and the following estimate holds:

lu(z,t) — z(z,t)| < M(N 2l N +71), (x,t)€ Gy (4.2)
The proof of this theorem can be found in [12, 13].

Remark. Under the conditions of Theorem 4.1, where n = K > 0, for the derivatives
(8% /Btko)u(x, t) and the divided differences 6z (<, t), the following estimates hold:

o

%u(w,t)‘ < M((f%)), (z,t) € G, ko < K +2; (4.3)
6z 2(z,8)] < Mgy, (2,1) € Ghan), t2107, ISK+1L (4.4)

Here we denote by §;32(z,t) the backward difference of order I:

07 z(z,t) = (61_1; z(z,t) — 6,7 2(z,t — T)) /7
o7 2(z,t) = 2(x,t), (z,t) € Gh, t>Ir, 1>1.

5. Schwarz method for parabolic equations

In this section we modify Schwarz’ domain decomposition method for the boundary value
problem (2.1), and for the solutions obtained we give the necessary and sufficient conditions
for e-uniform convergence.

5.1. We first describe Schwarz’ classical method for problem (2.1). Let a set of open subdo-
mains

D*¥ k=1,...,K (5.1a)
with piecewise smooth boundaries Ik rk = r(D* = D* \ D, cover the domain D:
D = LIj D, and let
= Gk =D*x(0,T), k=1,...,K. (5.1b)
We denote by D! the union of the subdomains D!, ..., DX which does not include D*:

K
p¥ = {J D (5.1c)
i=1,i#k
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We denote the minimal overlap of the sets D* and D*! by 8%, and by ¢ the smallest value of
ok, ie.,

min_ p(z}, %) =, (5.2)

k,z1, 22

mleﬁk, mzel_)[k], w1,$2¢{DkﬂD[k]}, k=1,...,K,

where p(z!, z?) is the distance between points z',z% € D. In general, the value § may depend
on the parameter €. '
Let .

u(z,t), (=z,t) €, : (5.3a)
be an arbitrary function satisfying the condition (2.1b). We seek a sequence of functions
u"(z,t), (,t) € G, r =1,2,... . Let a function u"(z, t) be known. The function u"!(z, 1) is

determined in the following way. First we find functions u’+%(w,t). These are solutions of
the following problems:

Lg% (2,8) =0, (z,¢) € G*, (5.3b)
W (2,1) = R (2,t), (2,t) €G\GY, k=1,...,K.
The required function is defined by the relation
u (e, t) = u”'%(z,t), r=0,1,2,... . (5.3c)
In the case of boundary value problem (2.1) the operator L 4y in (5.3b) is defined as
Ls.4(u(z,t)) = Layyu(z,t) — flz,t), (z,t) €G. (5.4)

Each function w™* % (z,t), (z,t) € G, is the solution of a Dirichlet problem on the set G
and coincides with the function u"+k_l_<‘l(a:,t) on the set G\ G*. This process is a natural
generalization of the classical Schwarz “alternating” method.

In principle, we could give conditions under which process (5.3), (5.4), and (5.1) converges
to the solution of boundary value problem (2.1) as r — oo, where r is the number of iterations.
However, in this paper we are interested in a non-iterative variant solver based on a modified
Schwarz method.

5.2. Now we describe the modified Schwarz method. Let
Wo (5.5a)
be a uniform grid, like &y(3.1), on [0,T] with a stepsize 7. By G(t1) we denote the strip
Gt) ={(z,t): (z,t) €G, i <t<t1+7}, t,t14+ 7€ oy

Let S(t1) = G(t1) \ G(t1) be the boundary of G(t;) and let v(z,t) = v(z,t;t;) be defined on
S(t,). We denote the extension of the function v(z,t) onto the whole set G(t1) by 7(z, t;t1).
The function v(z,t;¢1) is assumed to satisfy a Lipschiz condition with respect to t. We
subdivide the strip G(t;) into sections G¥(t;) = G* N G(¢1), S*(t;) = @k(tl) \ G¥(t1).
Suppose the function u(z,t), (z,t) € ovlG, for t" € Gy, t <t"<T,n=0,1,...,Ng—1,
has already been constructed. Now we construct the function u(z,t) for t < t**!) ie., we
find the function u(z,t) on the strip G(t*). This is done in the following way. First we find

functions u*/X (z,t) on the sections (—}’k(t") solving the boundary value problems
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Lis.4)(u¥ (,8) =0, (z,t) € GF(t"),
(aﬂ={ﬁ””w% k:L},(%ﬂESWW)

%(m,t), E>2

for (z,t) € G (t"), (5.5b)

R

U

k=1,...,K, t"e€wy, n<Ny—-1

Having u*/K(z,t) on @k(t"), we extend these functions for each value of k onto the whole
strip G(t") in the following way:

uk(z,1), (z,t) € G*(t™),

uk(z,t) = { @z, tth), k=1, ok
o), kzz},(%ﬂeG@)\Gﬂ)

for (z,t) € G(t"), (5.5¢)

k=1,...,K, t"€wp.
Having u*/K(z,t), for k = K we define the function u(z,t) on the whole strip G(t") by
u(z,t) = uk (z,8), (z,t) € G{H"), t"€aq. (5.5d)

Thereby we have the function u(z,t) defined on the domain G for t € [0,¢"!].
In the relations (5.5b), (5.5¢) the function %(x,t;¢") is constructed on the basis of a
function v(z, t; t"),

u(z, t;t") = v(z, t; "), (z,t) € G("). (5.5e)
Using v(z, t;t"), which is defined on the boundary S(¢") in (5.5g), we find the function
o(x, t; "), (z,t) € G(t"), (5.5f)

supposing 7(z,t;t") = v(z,t; t*) for (z,t) € S(t*) and o(z,t;t") = v(z,t"; t") for (z,t) €
G(t™). Here
p(xz,t), (z,t) €SE"), t" =t° =0,
v(z, ;") = ¢ o(z,t), (z,t)eSE*)NS, t=>1t"
tn s
ue,t), (@fesE)\s, t=e [0 70 HHES)

n=0,1,...,N0—1.

(5.5g)

Thus, the function @(z, ¢;t") on G(t") have been constructed.

The function u%(w,t) on each strip G(t") is the solution of a Dirichlet problem on the
section G*(t"), whereas on the set G(t") \ G*(t") it coincides with the function u(z,t;t"),
(z,t) € G(t") for k = 1, and with the function u%(z,t), (z,t) € G(t") for k > 2. Thus we
have found a function u(z, t), (z,t) € G, the solution of the process (5.5), (5.4), (5.1) which
we call the modified Schwarz method.

Note that the process (5.5), (5.4), (5.1), “the modified Schwarz method” is not an iterative
process in a strict sense. The boundary value problems in (5.5), (5.4), (5.1) are solved only
once at those points of G which do not belong to the intersection of the subdomains. The
boundary value problem is solved twice only on the intersection of the subdomains.

In the continuous domain decomposition method (5.5), (5.4), (5.1) the intermediate prob-

lems on the subséts 5?5_1), k=1,...,K are solved sequentially.
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Using comparison theorems [5, 6], we obtain the estimate
lu(z,t) — u(5_5)(:c,t)| < Q(E,J)No_l, (z,t) € G,

where u(5 5) (2, ¢) is the solution of the process (5.5), (5.4), (5.1), 6 = &(5.9)(¢), i.e., the function
u(s.5)(,t) converges, as Ng — 00, to the solution of boundary value problem (2 1) for each
fixed value of the parameter ¢. Note that the function u 5)(z,t) for § = 0 does not converge
to the solution of boundary value problem (2.1) as Ny — oo. Under the condition

d =6d;52() >0, e€(0,1], eel?f [e718(5.2)()] >0 (5.6)

which is equivalent to the condition § = (5 2)(€) > m(5.6)€, € € (0,1}, the function us.5)(2, 1)
converges e-uniformly as Ng — oo:

u(e,t) —us.s) (2, t)] < MNGY,  (z,t) € G.
If condition (5.6) is violated and the value ¢ satisfies the condition

6= 6(5.2) (6) > 0, AS (01 1]7 eei%)fl][e—l (5(5.2) (5)] =0, (57)

the function us 5)(x,t) does not converge g-uniformly.

5.3. Here we describe a continuous variant of the modified Schwarz method that allows

parallel computations on P > 1 processors.
Let D¥ k =1,...,K, be the subdomains from (5.1a) and let each D* be partitioned in

P disjoint (possibly empty) parts
F —k =k
DF=JDf, k=1,...,K, D;ND;=0,i#j. (5.8a)

Here we assume that the non-empty D:,f do overlap, but generally D* do not. We set
Gt =Dl x(0,T], p=1,...,P, k=1,...,K. (5.8b)
We find the function u(z,t) by the solution of problems (5.9) similar to (5.5) but now on the
set @: (t*) instead of G @t
E
L (uf (,8) =0, (2,1) € G5(t"), (5.92)

uk (z,1) = Mtn)’ e=1 (z,t) € SE™), p=1,...,P
P uKSCt k>2 ’ ? 7] y P= Ly

for ;ct)eG( "), k=1,...,K, t"€wy, n<Nyp—1;

L3 —
uE (z,1), (z,t) € Go(t"), p=1,..., P,

uk(2,t) ={ uz tt) k=1, i . (5.9b)
R ), k2 }, (z,t) € G(t") \Upey G (t)

for (z,t) € G({t"), k=1,...,K, t"euwy.
u(z,t) = uk (z,t), (z,t) € G(t), "€ (5.9¢)
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The function w(z, t;t") = v(z, t; "), (z,t) € G(t"), " € @o. The function (z,t;t"), (z,t) €
G(t") is determined as in (5.5f).
Stepwise, for n = 1,2,..., we find the function u.q)(z,?), (z,1) € G, i.e., the solution of
process (5.9), (5.8). This we call the modified continuous Schwarz method for P “processors”.
The scheme (5.9) with the decomposition (5.8) can be written in “operator” form

Q(u(z, t); wo, F(-),0(-),¥()) =0, (z,t) €G. (5.9d)
Here the function v(z,t;t"), (z,t) € G(t"), defines the prolonged function %(z, t;t"):

v(z,t;t"), (z,t) € S(t"),

’U(w,tn;tn) + ¢P(x, t; t"), (z,t) € G(t") }’ (z,t) € G(t"), (5.9¢)

u(z,t;t") = {

so that in the case of conditions (5.5e), (5.5f), simply, ¥(z,¢;t") = 0. The problem (5.9),
(5.8) for P =1 is identical with problem (5.5), (5.1).
In the continuous domain decomposition method (5.9), (5.8) the intermediate problems

on the subsets 5’;(5_8), p=1,...,P,k=1,...,K can be solved independently of each other,
for all p=1,..., P. For this construction the following theorem [14] is useful.

Theorem 5.1. The condition (5.6) is necessary and sufficient for e-uniform convergence (as
No — 00) of us.g)(x,t), i.e., the solution of process (5.9), (5.8) with P > 1, to u(x,t), i.e.,
the solution of boundary value problem (2.1).

6. Difference schemes based on the Schwarz method

6.1. Here we construct a difference scheme based on the process (5.5), (5.1) and give nec-
essary and sufficient conditions for e-uniform convergence of this scheme. We introduce

rectangular grids on each set G * and @: :

—k —k — —k =k =
Gh, =G N Gh(3.1)7 ph — Yp N h(3.1)» (6'1)
or
— —k — =k * ==k = *
Gr'=G" NGy Gpr =G, N Ghuay (6.2)

where @:h = C_J:’ p. We assume that the boundaries of G * and (_}’; pass through nodes of
grids Gy, and C'F,: , respectively.

Now we introduce a discrete function v(z,t) = v(z,¢;t;) defined on the boundary of a
discrete strip S(t;) = S(t1) N Gy, t1 € @. By (z,t;t1) we denote the extension of this
function v(z, t) to the discrete set Gi(t1) = G(t1) N G. The function T(x,t;¢;) is considered
to satisfy a Lipschitz condition with respect to ¢. The “strip” Gx(t1) consists of only two time
levels Gh(ty) = {@ x [t =t]} U {@ x [t = t1 + 7] }, where @ was introduced in (3.1).

Now we find discrete solutions z¥ (z,t) by a procedure similar to (5.5). That is, assuming
that z(w,t), t < t" is computed, we solve on the strip G(t") the following problems:

A.s) (2% (2,t)) = 0, (z,t) € GE(t™),
zZ(z,t;t"), k=1, for (x,t cGf t"), 6.3a
(w,t):{ (a6:47) } (e,t) € Sh(E™) (1) € GalE"), - (6.30)
2K (z,t), k>2
k=1,...,K, t"€d, n<Ny—1;
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2% (1), (z,t) € Gy (t"),
2% (z,t) = { Z(z, "), k=1, k¢ for (z,1) € Gy(t"), (6.3b)
e } (2,1) € Ca()\ GE (™)

k=1,...,K, t" € @p.

The required function z(z,t) on the strip G (t") is determined by the relation

2z, t) = 2K (2,t),  (z,t) € Ga(t?), £ € @o. (6.3¢)
In relations (6.3a), (6.3b)
Z(z, ;") = v(z, t; "), (z,t) € Gp(t"), t" € @y. (6.3d)

The function o(z,t;t"), (z,t) € Gx(t") is found, using v(z, t;t"), (z,t) € Sp(t"),

o vt 5E7), (z,t) € Si(th), o
(e, ") = { ) e e e } (2,8) € Galt"), (6.3¢)
where
(P(it,t), (z,t) € Sh(t"), th =10 = 0,
v(z, ;") = ¢ p(z,t), (z,t) € SR(t*) NSy, t>17, Mmoo , (6.3f)
2z,t), (2,8) € Sa(t™)\ S, t=t* [* ° 7

(z,t) € Sp(t"), n=0,1,...,Ng—1.

On each strip Gx(t") the function z%(x,t) is the solution of a discrete Dirichlet problem
on the set C—;’,’: (t"). On the remaining part Gp(t") \ GE(t"), for k = 1 it coincides with the
function Z(z, t; t*), (x,t) € Gx(t"), and for k > 2 with the function sz;l(w,t), (z,t) € Gp(t).
We define an operator A (g 3) by the relation

A3y (2(z,1)) = Apa)z(z,t) — fx,t), (2,t) € Gh. (6.4)

We seek a function z(.3)(z,t), (z,t) € G, i.e., the solution of difference scheme (6.3)
either on the grid (4.1) or on the grid (3.1) . The difference scheme (6.3) can symbolically
be written in operator form as

Q(6.3)(Z(6.3)(w7t);f(')a‘P(')a"/’(')) =0, (mvt) € G_h- (63g)

Similarly to (5.9¢), here the function ¥(z,¢;t"), (z,t) € Gh(t") determines the function
Z(x, t;t"):

v(z, t;1"), (z,t) € Su(t™),

z(e, ;") = {
v(z, t™; ") +¢(x, t;t"), (z,t) € Ga(t")

} , (z,t) € GL(E™). (6.3h)
In the above case of conditions (6.3d), (6.3e) we have ¢ (z,t;t") = 0.

In the discrete domain decomposition method (6.3), the intermediate problems on the sub-

sets D}y = 1_7?5_1) N D}, are solved sequentially. Thus, to solve boundary value problem (2.1),

here we used difference scheme (6.3), (3.1), which is the discrete equivalent of (5.5), (5.1). In
the following section we extend this to the “parallel” case (5.9).



238 P.W. Hemker, G.I. Shishkin and L.P. Shishkina

6.2. To describe the difference scheme that approximates process (5.9), (5.8) with P parallel
processors, assume that z(x,t) is known for ¢ < ¢"; then we solve the following problems:

Aoy (@) =0, (x,8) € GEA(E"), (6.52)

k zZ(z, t;t"), k=1, X
K(:I:,t)— 1 ’ (mat)esph(tn), p=1L1...,P

for (z,t) € GEL("), k=1,...,K, t" €@, n<No—1;
& —
# (2,t), (2,t) € Gpa(t™), P=1,..., P,
k
¥ (2,8) ={ 3(e,t;¢7), k=1, e
1 , (z,t) € Gt G (t"
P o) k> } (2,1) € G( )\pL:Jl (™)

for (z,t) € Gu(t"), k=1,...,K, t"€ayp.

We define a function z( 5)(z,¢) on the strip Gr(t") by the relation
2(6.5) (:E,t) = Z%(.’E,t), (m7t) € é_h(tn)a t" € @p. (65b)

In (6.5a) the function Z(z,#;t") = ¥(x, t;t"), (z,t) € Gr(t"). The function (z,t;t"), (z,t) €

Gp(t") is found, using v(z,t;t"), (z,t) € Sp(t"), which is determined by relation (6.3¢). Thus

the function 2 5)(2, ), (2,1) € G, i.e., the solution of difference scheme (6.5), (3.1) is found.
The difference scheme (6.5) can be written in operator form

Q(6.5)(z(6.5) (:l:,t); f())‘P()rw()) =0, (:L',t) € C_;'h, (65C)
with ¢(z,t;t") = 0.
In the discrete domain decomposition method (6.5), (3.1) the intermediate problems on

the subsets D_’;h = 52(5_8) N D, are solved independently of each other (“in parallel”) for all
p=1,...,P. For P =1 the difference scheme (6.5), (3.1} reduces to (6.3), (3.1).

Under condition (5.6), using the standard technique of comparison theorems, we get the
following estimate:

|Z(3_2)($,t) - z(6.5)(mat)| < MNO_I’ (z,t) € Gh, (6.6)

where z(3.9)(z, t) and z( 5) (z, t) are solutions of difference schemes (3.2), (3.1) and (6.5), (3.1),
respectively.

6.3. A technique similar to the one explained in [3, 4] gives us error bounds for the discrete
solutions that are obtained by the difference schemes described above. Under condition
(5.6), using the difference schemes (6.5), (3.1) and (6.5), (4.1), we obtain the following error
estimates for the solution of boundary value problem (2.1):

lu(z,t) — 25y (@, )| < M(ET'NT +7),  (2,8) € Ghzy, (6.7a)
u(z,t) — z(6.5) (2, )] < M(N*I? N+ 1), (2,t) € Ghayy- (6.7b)

The above formulation allows us to summarize a result obtained in [14] as follows:
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Theorem 6.1. Let the hypotheses of Theorem 4.1 hold for the data of boundary value prob-
lem (2.1) and its solution. Then, under condition (5.6) and for N, Ny — oo, the solution of
the difference scheme (6.5), (4.1) (or scheme (6.5), (3.1)) converges to the solution of (2.1)
e-uniformly (for a fized value of €). The estimates (6.6), (6.7) hold for the solutions of these
difference schemes.

Remark. If the condition n = 0 of Theorem 4.1 is replaced by n = K, K > —1, the following
estimate holds:

‘5& (23.2) (1) — Z(e.s)(fc,t))l < MM&;;) Ny, (z,t)€Gh t>1r, ISK+1.

7. Improved time accuracy

7.1. A scheme based on defect correction. The technique used in this paper to improve
time-accuracy is based on the one in [3]. For the difference scheme (3.2), (4.1) the error in
the approximation of the partial derivative (8/0t) u(z,t) is caused by the divided difference
6z z(z,t) and is associated with the truncation error given by the relation

9 o =271 O (et 67! 72 & ¥

‘a—tu(%t) — pu(z,t) = T@u(ﬂ’, )—67"7 wu(m,t —9), (7.1)
where 9 € [0, 7]. Therefore, we now use for the approximation of (8/6t) u(z,t) the expression
Sru(z,t) + Térzu(z,t)/2, where djzu(z,t) = &zu(z,t — 1), §;7u(x,t) is the second central
divided difference. We can obtain a better approximation than (3.2a) by the defect correction

_ d?
Apg2i(e,t) = f(a,t) + 27 'p(a, t)7 U@ 1), (7.2)

with £ € @ and t € Wy, where @ and Wy are as in (3.1); 7 is the step-size of the grid @o;
z%(z, t) is the “corrected” solution. Instead of (8%/8t?)u(x,t) we shall use §;z 2(x,t), where
z(z,t), (z,t) € Gpa1), is the solution of the difference scheme (3.2), (4.1). The new solution
z%(z, ) has a consistency error of the order of O(r?).

7.2. The defect correction scheme of second-order accuracy in time. Constructing
the difference scheme in (7.2), instead of (8%/8t%)u(z,t) we use 51 2(z, t), the second divided
difference of the solution to the discrete problem (3.2), (4.1). On G} we write the finite
difference scheme (3.2) as

A(S.Z)Z(l) (z,t) = f(z,t), (=,¢) € G, z(l)(x,t) = p(z,t), (@,t) € Sh, (7.3)

where 2(1)(z,t) is the uncorrected solution. For the corrected solution 2! (z,t) we solve the
problem for (z,t) € G,

2
p(z, 13)2'1 Tgpu(a:, 0), t=rm,

A(3.2)z(2) (z,t) = f(z,t) + { } ,  (z,t) € G,

p(z,t)27 7857 2 (2, t), t > 27
2B (z,t) = (x,t), (x,t) € Sh. (7.4)

2
Here the derivative %Zu(:c,ﬂ) is obtained from equation (2.1a).
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To clarify the construction, in the remainder of this section we consider a homogeneous
initial condition: .
o(z,0) =0, ze€D. (7.5)

Under this condition, the following estimate [4] holds for the solution of problem (7.4), (4.1):
lu(:c,t) — 2B (1) l <M [N_z In?N + 72 ] , (z,t) € Gp. (7.6)
This is more properly formulated in the following theorem [4]:

Theorem 7.1. Let condition (7.5) hold and assume in equation (2.1) that a, ¢, p, f €
Hetn=2(GF) o e HEM(G), a > 4, n = K, K > 1 and let condition (11.3) and the
estimates (11.6), (11.7) be satisfied for n = K. Then for the solution of difference scheme
(7.4), (4.1) estimate (7.6) holds.

7.3. The defect correction scheme of third-order accuracy in time. The above
procedure can be used to obtain an arbitrary large order of accuracy in time. Here we only
show how to construct a difference scheme of third order accuracy. On the grid G}, we consider
the difference scheme

Azz) 2(z,t) = f(=z,t) +

( 2
p(z,t) (0117'@2-21(1:,0) + 0121'258{3"&(:1:,0)) , t=m,

ot
\ plz,t) (0217'%715(:1: 0) + Caor? ag"l.l.((v O)) t=2r, (° (z,t) € Gn,  (7.7a)

| p(=,1) (Cglrézgz(z) (z,t) -+ Caar2d372(1) (w,t)) , t>3r

2(3)(1’7” = p(z,t), (x,t) € Sp.

Here z()(z,t) and z(¥(z, ) are the solutions of problems (7.3) and (7.4), respectively, the
derivatives (8%/0t%)u(z,0), (8%/8t*)u(z,0) are again obtained from (2.1a). The coefficients
C;; are determined below. They are chosen such that they satisfy the following conditions:

0 82 5 03

Eu(w t) = dpu(z,t) + CHTB su(z,t— 7) + Cia7% — 3 u(z, t — 1)+ O(r%),
d 2 5 03 3
6t u(z,t) = dru(z,t) + Clea 3 u(z,t — 27) + 022'7‘ 3t3 u(z,t — 27) + O(7°),
0

&u(m, t) = pu(z, t) + Car78y7u(x, t) + Caar?037u(z, t) + O(7%).

It follows that
011 = 021 = 031 = 1/2, 012 = C32 = 1/3, 022 = 5/6 (77b)

Again, for simplicity, we assume the homogeneous initial condition
(,0(:1:,0) =0, f(:E,O) =0, zeD. (7-8)

It is proved in [4] that under condition (7.8) the following error estimate holds for the
solution z(®)(z,t) of scheme (7.7):
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lu(a:,t) — 2% (z, 1) ‘ <M [N'z In®N + 73 ] , (z,t) € Gy. (7.9)
This is more properly formulated in the following theorem:

Theorem 7.2. Let conditions (7.8) hold and assume in equation (2.1) that a, c, p, f €
HEA=2(F) o c Ht™)(G), a > 4, n = K, K > 2 and let condition (11.3) and the
-estimates (11.6), (11.7) be satisfied for n = K. Then for the solution of scheme (7.7),(4.1)
the estimate (7.9) is valid.

Illustrative numerical results without domain decomposition are discussed in [3, 4]. These
results demonstrate the efficiency of the defect correction technique in improving the accuracy
with respect to the time variable. However, in this paper we are interested in distributing
the above algorithm over a number of independent (“parallel”) processes.

8. Parallel method based on defect correction

8.1. Difference schemes of second-order accuracy in r. Now we describe a finite
difference scheme (6.3) constructed for the modified Schwarz method (5.5) with P = 1 in the
case of defect correction. To approximate the alternating process (5.5), we apply the defect
correction scheme (7.4), (4.1) to the discrete equations (6.3), (6.2).

First we find a function 2(!)(z,t), (z,t) € Gx(t"), solving problem (6.3), (6.2)
W(z,t) = Z(6.3;6.2) (T, t) (8.1)

where 2% (2,t) and z(x,t) are now denoted by A% (z,t) and z(M) (&, t) respectively. To make
a precise reference later, we write the procedure (6.3), (6.2) now as

Apssa (2 (W% (z, t)) 0, (z,t) € GEE™, (8.2a)
(1) n
2 (z, t;t™)
z(l)%(m,t) = (@ . (z,t) € SF(t")
z(l)T(a: t),
for (z,t) € Gr(tY), k=1,...,K, t*€ @,
W% (2,1), (z,t) € Gr (™),
z(l)%(m,t) = 2(1)($7t;tn)7 k=1, (<, 4) & n) @k( n
- , (z,t) € t t
z(l)“kx—l(:z:,t), k>2 WE)\ Gr ()
for (z,t) € Go(t"), k=1,..., K, t" e .
Dz, t) = 2V (z,8), (2,t) € Grl(t"), t" € @ (8.2b)

Here
2W(z, ") = 7 (2, 5 1") = Beze) (T, 617),  (2,8) € GR(t"), t" € .
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Now we find z(z)'fk?(a:,t) for (z,t) € Gi(t"), solving the corrected problem
A(8.3) (Z(Z)%(m7t)) = 0, (x’t) € Gﬁ(tn)a (833')

23 (z, t;80), k=1,

z(z)k_l?"l“(:c,t), kE>2

D% (z,1) = { }, (z,t) € SE(t™)

for (z,¢) € Gr(t"), k=1,...,K, "€ dp;
D% (z,1), (z,t) € Gr(t™),

(2)1( — ) S2) (o 4 gn _

29k (2,t) = { 29(=, "), k=1, - &

_ , ,t Gp(t")\ G, (&7
z(z)kK_l(:c,t), k>2 } (z,t) € h( )\ h( )

for (x,t) € Gp(t"), k=1,...,K, t" € wp.

The function z(?)(z,t) on the strip G, (") is defined by the relation

2D (z,t) = 2Dk (z,8), (z,t) € Gh(t"), ¢ € @y, (8.3b)
Here
z@(z, ;") = v (z, t;1"), (z,t) € Gr(t™),
7@ (z, ") = v (a, ;1" 21 ()
= o(z, t%t") + 2V (2, ") — 2D (e, 1),  (=,8) € Gh(t™),
v(z, tt") = veap (e, tt"), (2,t) € Su(t");
Ags) (29(2,8)) = A2 (e, 8) - FD(z,0), (2t) € G, (8.3¢)

fO(a,t) = fO(, 8 20())

2
2,8)27 1 & u(z,0), t=r,
~ oy + | PEIT a0 . @b ek
p(z, )2 rdyzV(a, ), t>27
We call the function z(>),, the solution of the domain decomposition — defect correction scheme.
(8.3)

The difference scheme (8.3), (4.1) symbolically can be written in operator form

Q(G.S)(Z(l)(mrt);f(l)(')i(lo(')ﬂ/)(l)(')) =0, (CL', t) € Gha

B (8.3d)
Qee.s) (2@ (2, 8); FA(),0(),¥P () =0, (x,t) € Gy,

where

O, 1) = @), fP(2t) = flohy (@ 620(0), Dzt =0,
Ip(z)(w,t; t") = 1/J(2)(:t,t;t”,z(1)(-)) = z(l)(z,tn+1) - z(l)(m,t"), (z,t) € Gp(t"), t= thtl

For the solutions of difference scheme (8.3), (4.1) the estimate (7.6) holds also (assuming
that condition (5.6) and the hypotheses of Theorem 7.1 are satisfied).
In the case of P > 1 we discretize the process (5.9), (5.8). In grid constructions (8.2a) and

(8.3a), solving the finite difference boundary problems on the G¥, the functions z(l)%(m,t)
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&
and z(z)%(m,t) are replaced by the functions zl(,l)K (z,t) and zp )K(ac t), and the set G¥ is
replaced by the set Gﬁh

, ok
Ay (% (@) =0, @) € G, (5.42)
) =9 n k=1
(OF-2 _ (=, t;8"), ’ k (4n —
Zp (:B,t)—{ z)k (:l: t) k> 2 ) (:E,t)ESph(t )7 p—la'-'7P
for (z,t) EGph(t"'), k=1,.. K, t"edy, =12
Nk —_
D%E (2,1), (2,t) € Gy (1), p=1,...,P

Ok (,8) = { 2l . _ ,

2V (x,t) = ¢ Z0(z, t;¢"), k=1 — =k

ex T, (x,t) € GR(tM) \ UL, G, (7
z(")k?(a:, t), k> 2 } (z,t) h( ) \Up_l ph( )

for (z,t) € Gp(t"), k=1,...,K, t" €@, i=1,2
2D(e,t) = 2% (2,), (r,t) € G(t"), t"€@o, i=1,2.
Here
20(z, ;") = 79(a,4;7),  (z,t) € Ga(t"),
7 (z, ;") = 29 (2, t; 1", v ()

| v, ) + 9D (a, 880), (,t) € G(t7), .
N { ’U(:B,t;tn), ((l?,t) c S(tn) }’ (m7t) € Gh(t )7

o(e,517) = veap (@ 51", (2,8) € Sult"),
YD (2,58%) =0, $@ (2, 187) = Py (2,51 2y (), (2,t) € Ga(t?), t=1t"",
AQ ()% (2,1) = Ags 2)z},’%(m,t) ~ 19,1, (a,1) € Chy,
FO (1) = f(z,8), 1D (z,t) = foh) (@ ti 2lgy) ().
In operator form the difference scheme (8.4), (6.2) is written
Qo)W (@, 1) FD(), ¢(), ¥V() =0, (z,1) € G,

3 (8.4b)
Qe (z P (2,t);  FA(), (), ¥@()) =0, (z,t) € G,

where
f(l)(m7t) =f(€l:,t), f(2)(:13 t) (83)(“" t z84)())7

(e, ;") =0, 9O (2,452") = 93y (2,687, 25 ()-
Following the reasoning given in [3, 4, 14] the following theorem can be derived:

Theorem 8.1. Let the boundary value problem (2.1) and its solution satisfy the assumptions
of Theorem 7.1. Then, under condition (5.6), the solutions of the difference schemes (8.3),
(4.1) and (8.4), (4.1) converge, as N, Ny — oo, to the solution of the boundary value problem
e-uniformly (the solutions of schemes (8.3), (3.1) and (8.4), (3.1) converge for a fired value
of €). For the solutions of the difference schemes on grid (4.1) the estimate (7.6) holds.
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Remark. If the conditions of Theorem 7.1, where n = K + 1, K > —1, are satisfied, the
following estimate holds:

’55 (2(7.9) (1) — z(s.4)(f€,t))l < MM((Qs)NJz, (z,t) € Ghaq), [ <K+1L

8.2. Difference schemes of third-order accuracy in r. We approximate the boundary
value problem by the alternating scheme with one processor

AD (9% (2,6) =0, (a,8) € Gh(™), (8.5)

(1) .47 _
) ZV (x,t;t"), k=1,
V(2 t) =4 ﬁ_l )

W% (z,t), k> 2
for (z,t) € GF(t™), k=1,...,K, t"ea,, i=1,23

% (z,1), (2,t) € G (t"),

% (z,0) = 20 (@, ), k=1, (2,8) € Ga(t") \ GE ()
o k— ’ m, i
Ry k> e

for (z,t) € GL(t"), k=1,...,K, t"eay, i=1,2,3;
2D (z,t) = 2Dk (z,1), (z,t) € Tu(t), t" €@, i=1,2,3.

}, (z,) € SK(¢")

Here _ . _
Z(t)(:l:,t; tn) = i7?8)4) (wat; tnad)l('))’ (:E,t) € Gh(tn)’ 1= 1,2’3;

¥, 0% = ag&)(w»t; t"), s=12,
79 (2, 1;17) = 2 (2, ") — 2O, t7);
8 DS 8 )£
AEs?s)(z( )K(:c,t)) = A€8?4)(‘z( )K(a:,t)), s=1,2,
k 3
Ag.)s)(z(s)?(“”t)) = A(3.2)Z(3)K (z,t) — FO(=,1),
7Oz, 1) = FO(z, t; 2V (), 22 ("))
& 2 0
p(z,t) (OutSzu(,0) + Crar’ Sgu(e,0) ), t=,
_ 2 3
=@+ p(e,t) (Cn‘l’%;u(w, 0) + szrz%u(x,0)> . t=2r,
p(z,t) (0317'5252(2)(93,15) + C3a71%855 z(l)(a:,t)) . t> 37
(z,t) € Gk, Cij = Cij(r.r)-

In the case of P > 1 processors we use the scheme

. ok
AlYs) (zﬁ”"(z,t)) =0, (z,t) € Ghy(t), (8.6)
. —(‘L) .« i k —_ 1
(OF -4 2z, bt )5 ) k ran
,t) = _ , ,t) € S (t"), p=1,...,P
2p ((L' ) { z(l)'&K—l(w,t), k>2 ({E ) ph( ) p )

for (z,8) € Goy(t"), k=1,...,K, t" €@, i=12,3
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Nk _
ok ZI(JZ)K(m7t)’ (z,t) € G;h(tn), p=1,...,P
Z(Z)—f(z’ t) = E(l) (:E,t; tn)a k= 1’ ( t) é (t’n. UP ék "
y — ? ’ 6 —
Z(z)le(:L',t), k> 2 z h )\ p=1 ph( )

for (z,t) € GR(t"), k=1,...,K, t"€dy, i=1,2,3;
2N(a,t) = 29% (,8), (z,t) € Gu(t™), t" €@, i=1,2,3.
Here
z20(z,t; ") = v (z,t; £7), (z,t) € Gu(t?), T (z,t; t7) = EE?A) (w,t; " ‘qpi(.)) ,
¥ (2,8 £7) = Y (2,6 1) = Bigy) (2,85 €7, 205 (), 0 < j <),
FO(z,t) = f((;,)s) (a:,t; z((g_)ﬁ)(-), 0<j< z) .
Now the following theorem can be derived:

Theorem 8.2. Let the boundary value problem (2.1) and its solution satisfy the assumptions
of Theorem 7.2. Then, under condition (5.6), the solutions of the difference schemes (8.5),
(4.1) and (8.6), (4.1) converge, as N, Ny — oo, to the solution of the boundary value problem
e-uniformly (the solutions of schemes (8.5), (3.1) and (8.6), (3.1) converge for a fized value
of €). For the solutions of the difference schemes on grid (4.1) the estimate (7.9) holds.

Proof of Theorems 8.1 and 8.2 can be obtained by using the technique developed in
3, 4, 14].

9. Distribution of the scheme (3.2), (4.1)
over independent processes

In this section we compare basic scheme (3.2), (4.1) with scheme (6.5), (4.1), that is, a
decomposition scheme for P parallel solvers. These schemes have the same order of accuracy.
For problem (6.5), (4.1) the computation time (of solving the grid problem) for sufficiently
large number of solvers P can be essentially less than that for problem (3.2), (4.1).

For simplicity, we consider that the time of work for one solver (the time of solving a
problem and/or the intermediate subproblem) is determined only by the number of nodes in
the grid set where the boundary value problem (subproblem) is solved; all the rest operations
are realized instantly. In the case of scheme (6.3), (4.1) for sequential solvers, the computation
time is greater than that for scheme (3.2), (4.1) because of the covering of the subdomains.
For relatively small overlapping of the subdomains the computation times for problems (3.2),
(4.1) and (6.3), (4.1) are close. For scheme (6.5), (4.1) with parallel solvers the computation
time, depending on the number P of the solvers, can be less in many cases than that for
schemes (3.2), (4.1) and (6.3), (4.1).

If one and the same generative grid (4.1) is used for all the schemes, it can turn out
that the errors introduced by the domain decomposition (with the same order of accuracy)
essentially exceed the errors of the basic scheme (3.2), (4.1). This fact reduces the effect of
acceleration of the solution process with the use of parallel solvers. Thus, in the case of basic
difference scheme (3.2), (4.1), the formal application of the schemes for parallel solvers (on
the same grid (4.1)) leads to reducing the computation time and also to automatic growth
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of the error in the approximate solution, i.e., the basic scheme and the scheme for parallel
solvers on the same grid (4.1) turn out to be incomparable.

It is convenient to compare the computation time of the basic difference scheme (3.2),
(4.1) with a scheme for parallel solvers, but already on another (denser) grid, in case when
the errors of the discrete solutions for both the schemes are equal.

It is appropriate to speak that the use of parallel computations leads to acceleration of
the solution process (compared to the basic scheme (3.2), (4.1)), if such a scheme with P > 1
parallel solvers can be found for which the computation time turns out to be smaller, and
the accuracy of the approximate solution is not less than that for the basic scheme.

9.1. The error of the basic scheme (3.2), (4.1) can be represented as the sum of two compo-
nents generated by the errors of approximation of the space and time derivatives, respectively:

iz, t) = d1(z,t) + 62(z,t), (z,t) € Gh,

where §(z,t) = u(z,t) — 2(3.2)(2,t), () € G}, and, by assumption, the component §2(z, t)
is generated by the error of approximation of the derivative w.r.t. time. The function d2(z, t)
is the solution of the preblem

A(3.2)62(z;t) = ¢2($7t)a (w7t) € Gha 52(w7t) =0, (:L',t) € Sh)
where 5
dalat) = p(a,) | rule,t) — e 0], (@) € G
We consider difference schemes for P parallel solvers on the grids

kP

G =GFn @), Gn=0} =Dyxa}, (9.1)

p

where Dh(g 1) = Dh(4 1)1 @§ is a uniform grld on [0,T] with number of nodes N¥ + 1 and
grid step 7F; generally speaking, "’0(9 1) # ""0( 4.1)" For these difference schemes the error of

grid solution 0% (z,t) = u(z,t) — Z(s.s)(.’l) t), (z,t) € Gh(g_l), where z(6_5)(m t) is the solution
of scheme (6.5) on grid (9.1), can be represented as the sum of functions,

§P(z,t) = 87 (z,t) + 0F (2,t) + 65 (2,t), (z,t) € G,

where the components 6F (z, t), 8% (z,t), and §F (z,t) are generated, respectively, by the errors
of approximation of the space and time derivatives and by the discrepancy of the functions
Z(3.2;9.1)(, t) and z(e 5.0.1) (%, t) on the sets th X Wo(9.1), Where 2(3 2;9.1) (T, t) and z(6 5.9. 1)(w t)

are the solutions of problem (3.2) and (6.5) on the grids Gh(g.l) and Gph(ghl), respectively,
rkr= 5’; \ D¥. The function 6% (z,t) is the solution of the problem

A(3.2)5;(w,t) = ¢§(z7t)1 (‘v’t) € Gp, 55(“")#') =0, (wat) € Sh,
where éh = éh(Q.l):
0
Y7 (2,1) = p(z,1) | ula,t) - fu(z,t) |, (2,8) € GF.-
The function 6§ (z,t) is defined by the relation

6 (z,t) = Z(3.2:9.1)(z, ) — z{;_5;9_1)(m,t), (z,t) € GY.
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We say that difference scheme (6.5), (9.1) for P parallel solvers accelerates (for a fixed
value of the parameter ¢ or e-uniformly) the solution of the boundary value problem, if the
duration of computations (for the fixed value of the parameter ¢ or e-uniformly) by scheme
(6.5), (9.1) turns out to be less than that by the basic scheme, and, besides, the following
condition holds:
max |83 (z,t) + &5 (,t)] < r%axléé’ (z,t)], (9.2)

h

Gy
_ - ~P =
where Gp = Gpa.1), Gp = Gro.1y-

9.2. We compare the duration of computations for schemes (3.2), (4.1) and (6.5), (9.1) in
case when the difference derivatives 0zz(3.2)(,t) are sufficiently large as compared with the
derivatives (8%/0t?)u(z,t).

Further we need estimates for the quantities d2(z, ), 63’ (z,t) and &f (z,1).

For the quanitities 6% (x,t) and §(z,t) the following estimates hold:

2

8 _
168 (2,8)| < 27'TrF max (@) < M PMD,, (zt) € Crio1): (9.32)
[62(z,t)| < MiT MY, (2,8) € Gy, (9.4)

where M = 2-1T. For the quantity 6% (z,t), we have the estimate
1 - =P
68 (2,0)] < Mo MGy P (1+%672), (2,t) € Grpony. (9.3b)

We give also some bounds from below for the values of |d;(z, )| and |6F (z, 1)
Let on a certain set

@ ={(et): sh<e<ael, th<t<f}, T CG, (9.52)
the following condition hold:

=0

2
1(%—2u(z,t)| >m?, (z,t)eq. (9.5b)

Then, for the quantity d5(z,t), the following estimate is valid:

max | d2(z,t)| = ma m® r =mm® TN, (9.6)
Gh

where G, = @h(4.1)’ T = T(4.1)» m?) = mg?s)’

my = 8 min { 27 (a2 — x})? rnG_ina_l(a:,t), (t2 —t}) ngnp_l(a:,t) } .

We now investigate the behavior of the quantity d3(z,t). For this we consider problem
(3.2), (4.1) with £ = 1. In this case the grid (4.1) is uniform. Assume that for the solution
z(z,t) of scheme (3.2), (4.1) on the set

Gr=CG'nGy C={t):cl<a<al i<t} (9.7a)
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the following estimate holds:

_min |6; z(3.2)(2,t) ‘ > mlb), (9.7b)
Gy, t>0

We wish to estimate max 7, |d3(z,t)| from below under these conditions.
Let a decomposition of the domain G onto subdomains Gﬁ be such that the number of

nodes in the grid sets é’;h is equal, the overlapping width of the neighboring subdomains is
equal, and, besides, condition (5.6) holds. In this case d3(z,t) satisfies the estimate

max |d3(z,t)| > mamW7F, (9.8)
. v

where m; does not depend on K, P, and m; = mq(2? — 21, t2 — ).

Note that the same estimate for d3(z,t) is satisfied if ¢ € (0, 1], when condition (5.6) is
true for the minimal overlapping width of the subdomains, and also the number of nodes in
the grids @Zh for all the subdomains @i is comparable (the solvers are loaded effectively).

It follows from estimates (9.3a), (9.4) and (9.8) that in the class of schemes (6.5), (9.1)
for parallel solvers, if the condition

-1 11 @ Yo p _ 1 (2)
P <27 my9.8) Myg 3 M(o.7) (M(4.3)) =F =P (m(9-7)’M(4.3)) (9.9)
is valid, there do not exist e-uniform convergent schemes with effective w.r.t. loading parallel
solvers (i.e., the number of solvers P, the grids @} and the decompositions of the domain G

onto the subdomains C_;’: under condition (5.6)) for which the estimate (9.2) holds. Note that

the quantity P, from (9.9), under condition (9.7), infinitely grows for M, ((:')3) — 0.

Thus, in case when the difference derivatives 0zz(3.2)(,t), (z,t) € @h(“), on the set

G C @ are sufficiently large as compared to the derivative (8%/8t*)u(z,t) on G, and the
number P of solvers is not too large (for example, in case of condition (9.9)), the use of
~ parallel computations does not bring to acceleration of the solution process in comparison
with the basic scheme (3.2), (4.1).

Hence, conditions (4.3), (4.4), i.e., restrictions on the derivatives (6%/6t*)u(z,t) and
d52(3.2) (2, t), are not sufficient in order to accelerate the solution of the boundary value prob-
lem by means of parallel computations.

Theorem 9.1. Assume the derivatives (8?/8t*)u(z,t) and 8:2(3.2)(,t) satisfy only condi-
tions (4.3), (4.4). Then the use of difference schemes (6.5), (6.4), (9.1) for parallel solvers,
with their effective loading, does not allow us to accelerate the solution of boundary value
problem (2.1) for fized values of the parameter € and N. For difference scheme (6.5), (9.1)
acceleration of the solution process is not achieved.

9.3. In case when the difference derivatives 0z2(3 2)(z,¢) on the set G, t > 0 are sufficiently
small as compared to the derivative (62/0t?)u(z,t) on G, the use of parallel solvers allows
us to accelerate the solution of the basic scheme. In this subsection we determine conditions
under which an increase in the number of solvers leads in fact to acceleration of the solution
process.

Let the work time of solvers which resolve the discrete boundary value problem on the
layer ¢ = t! of the grid set Eg from Eh(“), is determined by the quantity ,u,(ﬁg), i.e., by the

number of nodes in the set 172.



Distributing the numerical solution of parabolic singularly perturbed problems ... 249

We begin with description of decompositions of the set D. Assume that the domain D
consists of J non-intersecting intervals

DIz j=1,...,J, (9.10a)

where D<*> N D<i> =@ fori #j, D = UJ D D97, J < M. On each of the sets G<J> =

D> x [0, T, the grid G, with a given distribution of its nodes generates the grids Gy’ h

G =G NGy j=1,-..,d, Gn=0Chpey) (9.10b)

Suppose that the boundaries of the sets G<i> pass through the nodes of the grid G. For
each of the sets D</> we construct an interval D7 containing D</> together with some

neighborhood. This set 1?] satisfies three conditions: (a) D’ contains the set of points the
distance of which from D’ is no greater than &y, where

with some fixed m} (9.10)5 ; (b) the sides of the set G = x [0, 7] pass through the nodes of

the grid Gp; (c) the number of nodes in each of the grlds Dl =D N Dy, is equal and does
not depend on the number j. The sets D7, j = 1,...,J, form a covering of the set D, and
the sets

G, j=1,...,J, (9.10d)
generated by DJ, form a covering of the set G, that is, G = U1 GJ. Assume that
j=
wD) = K, (9.10¢)
(DY) = L+ mlp o) WD) G=1000d, (9.10f)

where mfg_m) is a sufficiently small number.

The sets (9.10d), that is, the decomposition of G, are used for the construction of a
difference scheme with P solvers. Further, we construct sets

G<k>, k=1,...,K (9.11a)

which cover the set G, where the quantity K = K(P) is chosen from the condition KP = J.
Each of the sets G<*¥> is multiply connected (for P > 1) and formed by the union of P
non-intersecting domains from (9.10d). Thus, for sets G£, which form the sets from (9.11a),
the following condition holds:

k J ) — promt =
GPC{G,]—l,...,J}(g.IOd), k=1,...,K, p=1,...,P, (9.11b)

where p(ﬁz) = 0. In such a decomposition the solvers are loaded uniformly, i.e. their load
is effective.

Assume that the time, which is necessary for the solution of problem (3.2), (4.1) and (6.5),
(9.1), is defined by the relations

9 = 9(No) = Nop(Dh), (9.12a)
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9F = 9P (NE,P)= NF Zmaxu (Dgn)- (9.12b)
k=1

Let us define increase of acting (or acceleration of computations) by the relation

-1
C =C(Ny, NF,P) = 3@ = Ny (NE)™ u(Dp) { Z maxu } . (9.13)

For difference scheme (6.5), (9.11), (9.1), taking into account relations (9.10e), (9.10f), we
have '
d=(1+ m%g.lo))_lNOK(P)P/‘O’ 8" = NJDK(P)V'O’

and, consequently,
C=(1+ m%g.m))_lNO(Ntf)—lP-

Finally, we give conditions ensuring acceleration for parallel computations.

Let the conditions (9.5) and (4.4) be fulfilled for the derivative (82/8t%)u(z,t) and the
difference derivative dzz(z,t), respectively.

In case when the steps of the grids u‘;éa( 41) and “_’5(9,1) satisfy the condition

mM1(9.6) mg.)s)‘f 2 [Mz(s-s)M((i)f;) +M1(9-3)M((i)a)] 77,
which is equivalent to the condition
_ - *
Nf > (myg))” (mgg)s)) [M2(9.3)M((:.)4) + M1(9.3)M((42.).~,) ] No = Ng%, (9.14)

the condition (9.2) is fulfilled for the components d2(z, t), 6% (z,t), 6% (z,t). Under the con-
dition N = 6*(};_1 4 We obtain the following relation for the quantity C:

-1 2 1 2 -1
0 = (s i [ + Mt

Thus, if the number P of solvers is sufficiently large

P> (14mlg) (mes) (M) [MaesMie + MieyMiy)

— p* _ p* 2) 1) (2)
= P* = P* (m{Dy, M3y, MTh) ), (9.15)
then, under the condition
-1

the acceleration is achieved for the solution of the boundary value problem; in this case the
quantity C' is determined by the relation

C=P(P*)!, P*=Pyy. (9.17)

Note that the quantity P* grows infinitely as mg?s) — 0.

Acceleration of the solution process, generally speaking, is unattainable, if condition (9.15)
is essentially violated, for example, under condition (9.9).
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Theorem 9.2. Let conditions (4.3), (9.5), (4.4) be fulfilled for the solutions of boundary value
problem (2.1) and difference scheme (3.2), (4.1). Then, in the class of difference schemes
(6.5), (9.1) for parallel solvers, e-uniform acceleration of the solution of boundary value prob-
lem (2.1) is achieved under condition (9.15); acceleration of the solution process for fized
values of the parameter € and N, generally speaking, is unattainable, if condition (9.15) is es-
sentially violated. In case of condition (9.15), the parameters of schemes (6.5), (9.11), (9.1),
ensuring acceleration, and the achieved rate of acceleration C are determined by relations
(9.16) and (9.17).

Remark. In case of the basic scheme, when one solver is used, the solver works with /V
unknown quantities. When P > 1 solvers are used for parallel computations, one solver
works with NXP = (1 +m%9'10))K 1P~ N unknown quantities. Thus, the application of the

domain decomposition (in particular, parallel computations) leads to a decrease in loading
for the solvers used.

10. Distribution of scheme (7.4), (4.1)
over independent processes

We now compare the basic scheme (7.4), (4.1) with the decomposition scheme (8.4), (4.1)
involving P parallel solvers. These schemes have the same order of accuracy. In case of
scheme (8.4), (4.1) the error of the grid solution, generally speaking, is greater than that in
case of scheme (7.4), (4.1). This fact is caused by the perturbation of the solution of the
basic scheme due to its decomposition. The presence of parallel solvers allows one, for the
same time of work, to obtain the grid solution in the greatest number of nodes as compared
to the basic scheme.

10.1. In this subsection we give conditions under which the use of a scheme with parallel
solvers allows us to accelerate the solution of the boundary value problem, as compared to
scheme (7.4), (4.1), without loss in accuracy of the numerical solution.

The error of the solution of the basic scheme (7.4), (4.1)

Go(z,t) = 67 (x,1) = u(e,t) — zp.0(2, 1), (2,t) € G (10.1a)
(1)

and the error of the component z(;_4)(w, t) of the solution of the basic scheme

59 (2,1) = u(z,t) — 27y (2,8), (2,t) € G (10.1b)
can be represented in the form of a sum of functions
590(z,t) = 60 (2, t) + 6 (2,8), (x,t) € Gh, i=1,2, (10.1c)

where the component 55") (z,t) is caused by the error of the approximation of the time deriva-
tive, 852 (z,t) = 0a(z,t).
The error of the solution of scheme (8.4), (4.1), i.e., the function

d(z,t) = 5(2)(z,t) = u(z,t) — 24 (z,t), (z,1) € Gh, (10.2a)
and the error of the component zg_)‘l)(z,t), i.e., the function

50 (z,8) = ul(z,t) — z{g)y (. t), (,t) € G, (10.2b)
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can be represented in the form of a sum of components

50 (e, t) = 8 (2, t) + 08 (2, ) + 68 (2, 1) = 65 (2, 1) + 65 (2, ¢), (10.2¢)
(z,t) € G, i=1,2,

where the error 6(i) (z,t) is caused by decomposition of scheme (7.4), (4.1); 63 (z,t) = 8(x, 1),

557 (2,1) = by(z, 1)
If the grid (9.1) is used, then the function 6F (z,1), i.e., the error of the solution of scheme
(8.4), can be written in the form

57 (1) = 6F (2,2) + 6L (z,1) + 65 (2,1), (2,t) € Choy); (10.3)
with &7 i(10. 3)(::: t) = d;(10.2)(z,t) for Grion) = G’h(4 1)» 5 = 1,2,3. The function of (z,t) is

defined by the relation: 83 (z,t) = z(7.40.1)(2,t) — 2 8_4;9.1)(m,t), (z,t) € Gh

We say that difference scheme (8.4), (9.1) for P parallel solvers accelerates the solution
of the boundary value problem, if the duration of computations by scheme (8.4), (9.1) is less
than that for the basic scheme (7.4), (9.1}, and, besides, the following condition holds:

néa}:x \5Z10.3)($:t) + 55(10.3)(“’,t)‘ < r%ahx ‘5210.1)($,t)l’ (10.4)

h
—_ — _P —
where Gh = Gh(4.1)7 Gh - Gh(9.1)-

10.2. We now give some estimates for the components d2(z, t), 0% (z,t), 6 (z, t).
The functions Jg) (z,t) are the solutions of the problems

A(S 2)551)(93 t) = (1)(:1!,t), (zat) € Gp, 5( )( ) =0, (wyt) € Sh;
A0 (2,8) = £P(2,0), (2,t) € G, 8(z,t) =0, (z,) € Sp,

where 5
(1 (z,t) = p(z,t) (au — bpu(z, t))
) 0 o?
7 (z,t) = p(z,t) 7Y (z,t) — o —zule,t) — dpu(z,t) +
2
t 0), t=r,
271 3t2 uat) - a2 w(=,0), T . (z,t) € Gh.
62t-6g1) (:L‘,t), t>2r
For the function 65?10.1)(:1:, t), the following estimates hold:
6088 (@,8)| < MMG 7, t21m, (10.5)

5200 (,0)| < M (MEE) + MEE)) 7, t2rr (3,9 €Gh ISK,



Distributing the numerical solution of parabolic singularly perturbed problems ... 253

with » < K — 1, where K is the quantity from Theorem 7.1.
We give some estimates from below for the function d2(z,t).
Let on a certain set,

0

={(w,t): o <z < al tégtﬁt%}, G CG, (10.6a)
the following condition hold:
83 3 =0
FEu@ )| 2 m®, (z,t) e G . (10.6b)
Then the following estimate is valid for the §3(z, t):
max | §3(z,t) | > mym® 72 = m; m® 72 N2, (10.7)

h

where G, = éh(4.1)> T = T(4.1)s m® = mg.)l)’ m1 = Mi(g.6)-

Lemma 10.1. Let the conditions of Theorem 7.1 be fulfilled for the data of boundary value
problem (2.1). Then estimates (10.5) hold for the function §(z,t) and the component

Jél)(m,t). If, besides, condition (10.6) is fulfilled, then estimate (10.7) is valid.
B Let us estimate 63{’(10‘3). The functions éy)P(x,t) = z((;4 9. 1)(.’8 t) — ((;)49 1)( t), (z,t) €
Gp(e.1) are the solutions of the problems

Qees) (8577 (2,8 FI (), oM (), w()) =0,
Qs (357 (@, 1); FA(), 02(), ¥19()) =0, (2,8) € Gagony,

where
Oz t) =0, oD(z,t) =@ (z,t) =0,

Py (z,t; ") = 7762 (2, 8), ¢ =",

FO(w,1) = 27177 p(2, 1) (8688 (2,1) - 8 67 (2,1))

P (z,t; t*) = 17 (5; s (2, 1) — 55522)(93,15)) . t=tt
Taking into account estimates (4.4), (10.5), we find

18260 (2,8)] < MM((41)3) , t<IP, (10.8)

th_53 ( )) < MM((Z;;)( ) ) (:E,t) € (—;h(9.1)7 <K +2,

with r < K — 2, where K > 2 is the quantity from the hypothesis of Theorem 7.1.
For the component 6{}10_3) we have the estimate

8,208 (@, 0)] < M (MG + MG30t) (7P, (1) € Ghoy, <K -1 (10.9)

Lemma 10.2. Let the conditions of Theorem 7.1, where K = 2, be fulfilled for the data
of boundary value problem (2.1). Then estimates (10.8), (10.9) are valid for the functions

68 (z,t), 6% (z,t) and the component 5§I)P(m,t).
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10.3. In case when the derivative (8%/8t%)u(z,t) on the set G is not too small, the use of
parallel solvers allows us to accelerate the solution of the basic scheme (7.4), (4.1).

Let the duration of the solution of problems (7.4), (4.1) and (8.4), (9.1) be defined by
relations (9.12a) and (9.12b), respectively, and acceleration of the solution of the boundary
value problem is defined by relation (9.13). For the decomposition scheme we use the grid

construction (9.11).
In case when the steps of the grids (.55(4_1) and 07(};(9‘1) satisfy the condition

a0 Mg ™ 2 [Mos MO + Mgg) (MO +MOT)] (+F)7,
which is equivalent to the condition
N§ > {(ml(m.rf-))“l(mfﬂﬁ))_l [M10.6)M® + Mu0) (M © + M T)] } Ny
= M*N, = N;F, (10.10)
M* = M* (m(3), MO @, M(5)) (10.11)

where M (ko) = M((:%)), the estimate (10.4) holds for the components d2(z, t), 6% (z, ), 6F (z,1).

Under the condition N& = N3% we obtain the following expression for the quantity C":
0 0(10.10) q y

-1 _
C= (1 +m%9.10)) (M*)~ P,
In case when the number P of solvers is sufficiently large
P> (1+mfy ) M* =P, (10.12)

acceleration can be achieved for the solution of the boundary value problem. In fact, accel-
eration is achieved under the condition

N§ = (1 +my 1) 'No P*. (10.132)
The quantity C, which characterizes the achieved acceleration of the solution, is defined by
C=P(P*)', P =P (10.13b)

Theorem 10.1. Let the conditions of Theorem 7.1, where K = 3, hold for the data of
boundary value problem (2.1) and let condition (10.6) be satisfied for the solution of the
problem. Then in the class of difference scheme (8.4), (9.1) for parallel solvers e-uniform
acceleration of the solution of the boundary value problem, as compared to the basic scheme
(7.4), (4.1), can be achieved under condition (10.12), where M* is given by (10.11). In
case of condition (10.12), (10.11), the parameters of scheme (8.4), (9.11), (9.1), ensuring
the acceleration, and the achieved rate of acceleration, i.e., the quantity C, are defined by
relations (10.13).

Remark 1. In case when condition (10.6) is violated, that is, (83 /0t%)u(z,t) = 0 on the
whole domain G, we can consider problem (2.1) as a problem with constant coefficients (and
with c(z,t) = 0); the function u(z,t) = z(1 — z)t? is the solution of this problem. The
function z((:)4) (z,t) is almost u(z,t) up to terms O(&?):

max \5§2’(z,t)‘ < Me?, j=0,1,2. (10.14a)
Gh
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For the function z((;?4), we have the estimate

|2y ~ (@ +71)| < Me%,  (z,t) € Gy (10.14b)
The functions (5:(,“ (z,t) are the solutions of the problem

Qeesy (887 (2,8):0,0,4()) =0, Qo5 (8677 (2,1); 0,0, 9@ ()) =0, (a,) € Gy,
where

P (e, ;") = uz(” (z, ™) + z((;."i) (z,t"),

@ (2, t;47) = 607 (@, t771) — 67 (2, ") + 857 (2, 8711) — 60 (2, 87), &= ¢™HL

From (10.14), it follows that in case (5.6) we have the estimate

max | gz)P(:c,t) ' > m(rF)2.
Gh

Thus, e-uniform acceleration of the solution of the basic scheme (7.4), (4.1) is unattainable
for any large number P of solvers (P < My, where M) is a sufficiently large number).

Remark 2. In case when condition (10.6) holds, but condition (10.12) is essentially vio-
lated, the acceleration of the solution process by using parallel solvers is, generally speaking,
unattainable (for fixed values of the parameter ¢ and N).

10.4. Let us consider the basic scheme (7.4), (4.1) and its decomposition, i.e., scheme (8.6),
(9.1) with parallel solvers. We assume that the condition

64

pm u(z,t) | > m®,  (z,t) € ren (10.15)

holds on a certain set G|, 10.6a)-
For scheme (8.6), (9.13 we use decomposition (9.11). Then, under condition (10.10), where
M* = M* (m(4), M(4), M(5), M(G), M ) ’ M ko) — M((f%)), (10.16)
the estimate (10.4) is fulfilled for the components 82(z,t), 67 (z,t), 63 (z,t), corresponding to
schemes (7.4), (4.1) and (8.6), (9.11), (9.1).
Acceleration of the solution of the boundary value problem, if we use scheme (8.6), (9.1) in-
stead of scheme (7.7), (4.1), can be achieved when the number P of solvers is sufficiently large,

namely, under condition (10.12), (10.16). Acceleration of the solution process is achieved un-
der condition (10.13a); for the quantity C relation (10.13b) is fulfilled.

Theorem 10.2. Let the conditions of Theorem 7.2, where K = 5, hold for the data of
boundary value problem (2.1) and let condition (10.15) be fulfilled for the solution of the
problem. Then in the class of difference schemes (8.4), (9.1) for parallel solvers e-uniform
acceleration of the solution of the boundary value problem, as compared to the basic scheme
(7.4), (4.1), can be achieved under condition (10.12), where M™* is given by (10.16). In
case of condition (10.12), (10.16) the parameters of scheme (8.6), (9.11), (9.1), ensuring
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the acceleration, and the achieved rate of acceleration, i.e., the quantity C, are defined by
relations (10.13), (10.16).

Remark. If condition (10.15) is violated, then acceleration of the solution of the boundary
value problem is not achieved even if a large number P of solvers is used. If condition (10.12),
(10.16) is violated, i.e., the number of solvers used is not sufficiently large, then acceleration
of the solution of the problem cannot be achieved.

Conclusion

In order to efficiently solve a singularly perturbed parabolic PDE by an e-uniform dis-
cretization procedure, 2nd order accurate in space and high-order in time, we studied a defect
correction procedure. To reduce the computation time, we splitted the procedure into P in-
dependent processes, preserving e-uniform convergence. We gave a precise description of
conditions under which the splitting does not affect the accuracy of the method.
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11. Appendix: Estimates of the solution and its derivatives

Here we consider a-priori estimates for the solution of problem (2.1) and its derivatives
derived for elliptic and parabolic equations in [11, 13].

We denote by H (@) (@) = H*%/2(G) a Holder space, where « is an arbitrary positive
number [6]. We suppose that functions f(z,t) and ¢(z,t) satisfy compatibility conditions at
the corner points, so that the solution of the boundary value problem is smooth for every
fixed value of the parameter ¢.

For simplicity, we assume that at the corner points Sy NS, the following conditions hold:

o* ko

sor (@) = 5oe(@,t) =0, k+2k <[] +2n, (11.1)
k-+ko

ngf(m,t) =0, k+2ky <[a]+2n-2,

where [a] is the integer part of a number o, a > 0, n > 0 is an integer number. We also
suppose that [a] +2n > 2.

Using interior a-priori estimates and estimates up to the boundary for a regular function
(€,t), [6], where 4(¢,t) = u(z(€),t), € = z/e, we find for (z,t) € G the estimate

ak-}-ko

B2k 5k SMe™*, k+2k<2n+4, n>0. . (1L2)

u(z, t)

This estimate holds, for example, for
we HEH)(@), v>0, (11.3)

where v is some small number.

For example, (11.3) is guaranteed for the solution of (2.1) if the coefficients a, c, p,
fe Hern=2(G) oe Het)(F), a >4, n> 0 and condition (11.1) is fulfilled.

In fact we need a more accurate estimate than (11.2). Therefore, we represent the solution
of the boundary value problem (2.1) in the form of a sum,

w(z,t) = Uz, t) + W(z,t), (z,t) €T, (11.4)

where U(z,t) represents the regular part, and W (z,t) the singular part, i.e. the parabolic
boundary layer. The function U(z,t) is a smooth solution of equation (2.1a) satisfying
condition (2.1b) for ¢ = 0. For example, under suitable assumptions for the data of the
problem, we can consider the solution of the Dirichlet boundary value problem for equation
(2.1a) smoothly extended to the domain G~ (G~ is a sufficiently large neighborhood of G).
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On the domain G, the coefficients and the initial value of the extended problem are the same
as for (2.1). Then the function U(z,t) is a restriction (on G) of the solution to the extended
problem, and U € H?"+4+)(@), v > 0. The function W (z, ) is the solution of a boundary
value problem for the parabolic equation

LioyW(z,t) =0, (=z,t)€q, W(z,t) = u(z,t) — U(z,t), (z,t)€S. (11.5)

If (11.3) is true then W € H4+H)(G). We assume that a, ¢, p, f € H@ )(G), ¢ €
H@+)(@), o > 4, n > 0. Now, for the functions U(z,t) and W (z,t) we derive the
following estimates:

—ak+k0 2n+2—k

ek o U (Bt S M1+e I (11.6)
3k+k0 L 9 i

2% otk ¥ (@&t)| < Me " exp(—muypeT r(z,7)), (11.7)

(z,t) € G, k+2ko < 2n+4,

where r(z,v) is the distance between a point z € D and the set ¥ = D \ D, m(11.7) is a
sufficiently small positive number. We summarize these results in the following theorem (see

[13]):

Theorem 11.1. Assume in equation (2.1) that a, c, p, f € H@+2)(G), o € H(@+20)(G),
a >4, n > 0 and let condition (11.3) be fulfilled. Then, for the solution u(z,t) of problem
(2.1), and for its components in representation (11.4), it follows that u, U, W € H 4+27)(G)
and that the estimates (11.2), (11.6), (11.7) hold.
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